

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: PSD(19EE0227) Course & Branch: B.Tech - EEE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R19

UNIT -I **CONVERTER FED DC MOTORS**

1	Draw and explain the operation of 1-Ø semi controlled converter fed by	[L2][CO1][12M]
	separately excited dc motor.	
2	A 1-Ø,230V,50HZ supply feeds a separately excited dc motor through two	
	1-Øsemi converters, one for the field and the other for the armature. The	[L3][CO1][12M]
	firing angle for the semi converter in field circuit is zero, the field	
	resistance is 200Ω and the armature resistance Ra is 0.3Ω . The load torque	
	is 50 N-m at 900 rpm, the voltage constant is 0.8V/A-rad/s and the torque	
	constant is 0.8N-m/A ² .assume that the armature and field currents are	
	continuous and constant, and neglect the losses. Find the following (a) the	
	field current (b) the firing angle and (c) the power factor of semi-converters	
	in the armature circuit.	
3	With neat diagram, explain 1-Ø fully controlled converter fed by separately	[L4][CO1][12M]
	excited motor in continuous conduction mode.	
4	Sketch the appropriate voltage and current waveforms of 1-Ø semi	[L3][CO1][12M]
	controlled converter fed by dc series motor.	
5	The speed of a 20HP,210V,1000rpm,series dc motor is controlled by a semi-	[L3][CO1][12M]
	converter, the combined field and armature circuit resistance is 0.25Ω ,	
	Kaf=0.03N-m/ A ² and Kres=0.075 V-S/rad. The supply voltage is	
	230V.Assuming continuous and ripple –free motor current, determine the	
	following for a firing angle α =30° and speed N=1000 rpm.	
	i. The motor torque	
	ii. The motor current	
	iii. The supply power-factor.	
6	For firing angle α =90°, draw voltage and current waveforms of 3-Ø semi	[L5][CO1][12M]
	converter fed by DC series motor	
7		[L3][CO1][12M]
	rated torque is controlled by a 3-Ø,6-pulse thyristor. If the back emf at rated	
	speed is 410V, determine the triggering angle of the converter it is fed with a	
	3-Ø,415V, 50Hz ac supply.	
8	Draw and explain operation of 3-Ø fully controlled converter fed by	[L2][CO1][12M]
	separately excited dc motor.	

9	The speed of a 150HP, 650volts SEDC motor is operating at 1750rpm is [L3][CO1][12M]	
	controlled by 3-φ full converter Which is operating from 3-φ, 460volts,	
	50Hz Supply. The rated armature current of the motor is 170A. The motor	
	parameters are R_a =0.099 Ω , L_a =0.73mH, $K_{a\phi}$ =0.33V/rpm. (a)Find the no load	
	Speed at $\alpha=0^{\circ}$, $\alpha=30^{\circ}$. Assuming no load current is 10% of rated current.	
	(b)Calculate the firing Angle at 1750rpm speed of rated motor current also	
	computes the supply p.f. (c) the speed regulation	
10	Using RLE load, analyze the operation of three phase fully controlled [L4][CO1][12M]	
	converter with neat sketch.	

<u>UNIT –II</u> FOUR QUADRANT OPERATION OF DC DRIVES

1		Write short notes on a) Plugging b) Dynamic braking c) Regenerative braking	[L2] [CO2] [12M]
2		An non-circulating current dual converter is connected to a dc motor. Explain its control strategies for selecting its multi-quarant operation converter with	[L5] [CO2] [12M]
		the help of power circuit diagrams.	
3		A 220V, 970rpm, 100A dc separately excited motor has an armature	[L3] [CO2] [12M]
		resistance of $0.05\Omega.\text{It}$ is Braked by plugging from an initial speed of	
		1000rpm.Calculate a) Resistance to be placed in armature circuit to limit	
		braking current to twice the full load value, b) Braking torque c) Torque when	
		the speed has fallen to zero.	
4	a	Compare Ideal and practical dual converter based on various aspects.	[L3] [CO2] [6M]
	b	Compare practical non circulating and circulating type dual converter.	[L3] [CO2] [6M]
5		A 220V, 750RPM, 200A separately excited motor has an armature resistance	[L3] [CO2] [12M]
		of 0.05 $\Omega.$ Armature is fed from a 3-phase non-circulating current mode dual	
		converter consists of fully controlled rectifiers A&B. Rectifier A provides	
		motoring operation in the forward direction, rectifier B in reverse direction,	
		line voltage of ac source is 400volts. Calculate firing angle of rectifier for the	
		motoring operation at rated torque and 600rpm assuming continuous	
		conduction	
6	a	Draw and explain operation of current limit control	[L2] [CO2] [6M]
	b	Draw and explain operation of torque control by using closed loop control of	[L2] [CO2] [6M]
		DC Drives	
7		A 400V,750 rpm,70A,dc shunt motor has an armature resistance of 0.3Ω ,	[L3] [CO2] [12M]

	, ,		
		when running under rated condition ,the motor is to be braked by plugging	
		with armature current limited to 90A .what external resistance should be	
		connected in series with the motor ,calculate the initial braking torque and its	
		value when the speed is increased to 300 rpm.	
8		With a neat diagram, explain the four quadrant operation of a DC drive in all	[L4][CO2] [12M]
		four quadrants. When fed by a three phase circulating current mode dual	
		converter.	
9	a	A 230V, 870rpm, 100A separately excited DC motor has an armature	[L3] [CO2] [6M]
		resistance of 0.02Ω . It is coupled to an over hauling with a torque of 400N-m.	
		Determine the speed at which motor can Hold the Load by regenerative	
		braking.	
	b	Explain the operation of closed loop speed control of dc drive.	[L2] [CO2] [6M]
10		A 220V, 1000 rpm, 60A separately excited dc motor with an armature	[L3] [CO2] [12M]
		resistance of $0.6\ \Omega$ is fed from a circulating current dual converter with ac	
		source voltage (line) of 165 volts. Determine converter firing angles for the	
		following operating modes.	
		i) Motoring operation at rated motor torque & 900 rpm.	
		ii) Braking operation at rated motor torque & 900 rpm	
		iii) Motoring operation at rated motor torque & -900 rpm	
		iv) Braking operation at rated motor torque & -900 rpm	
L			l.

<u>UNIT –III</u> CHOPPER FED DC MOTORS

1		Explain the operation of first quadrant chopper fed by separately excited DC motor with necessary waveforms	[L2] [CO3] [12M]
2		Describe how the operation of second quadrant can be obtained from chopper fed by separately excited DC motor.	[L2] [CO3] [12M]
3	a	A separately excited dc motor with armature resistance of 0.01Ω with dc supply 220V,100A,1000rpm is fed with chopper control for its motoring and braking operations. Assuming continuous conduction calculate (i) the duty ratio of the chopper at rated torque with speed of 500 rpm for its motoring operation (ii) the duty ratio of the chopper at rated torque with speed of 500 rpm for its braking operation	[L3] [CO3] [6M]

	b	A 230V, 1200 rpm,15A separately excited dc motor has an armature	[L3] [CO3] [6M]
		resistance of 1.2Ω motor and is operated under dynamic braking ,with	
		chopper control braking resistance of 20Ω . (i)calculate the duty ratio of the	
		chopper for motor speed of 1000 rpm and braking torque equal to 1.5 times	
		rated motor torque (ii) what will be the motor speed for duty ratio of 0.5 and	
		motor torque equal to rated torque?	
4		Summarize the operation of dynamic braking for series & separately excited	[L5] [CO3] [12M]
		DC motor?	
5	a	A separately excited dc motor is running at 1100rpm, 210V, with an armature	[L3] [CO3] [6M]
		resistance of 0.08. the initial speed of the motor is 1200rpm when broken by	
		plugging ,take I_a =140A.(i) to limit the braking current to twice the full load	
		value, calculate the resistance to be placed in armature circuit.(ii) calculate the	
		braking torque ,and when speed is reduced to zero, calculate the torque.	
	b	A 230V,10A,1500rpm separately excited dc motor with armature resistance	[L3] [CO3] [6M]
		of 1.5Ω motor in operator under dynamic braking with chopper control.	
		Braking resistance has a value of 15Ω .	
		(i)calculate the duty ratio of chopper for motor speed of 1200rpm and braking	
		torque equal to 2 times the rated motor torque.	
		(ii)what will be the motor speed for duty ratio of 0.6 and motor torque equal	
		to twice the rated torque?	
6		Discuss the operation of motoring & regenerative braking of series excited	[L2] [CO3] [12M]
		DC motor?	
7		A dc series motor has its speed controlled by a chopper from a 600V dc	[L3] [CO3] [12M]
		source having armature and field resistance of 0.05Ω and 0.07Ω respectively.	
		The armature current is assumed to be continuous and ripple-free, and the	
		average armature current is 500A, the back emf constant of the motor is	
		Kt=15.27mv/A-rad/s, if the duty cycle of the converter is 60%.Determine the	
		following	
		(i)power generated from the input source	
		(ii) equivalent output resistance of converter	
		(iii) speed of motor and developed torque of motor.	
8		In regenerative braking of dc series motor, a dc-dc converter is used. The	[L3] [CO3] [12M]
		armature and field resistance are 0.06Ω and 40.08Ω respectively. The dc	

		supply voltage is 500V.the armature current is assumed to be continuous and	
		ripple-free, and the average armature current is maintained constant at	
		I _a =300A.the back emf constant is Kt=15.27mv/A-rad/s. If the duty cycle of	
		the converter is 65%, determine	
		(i) the voltage across chopper	
		(ii) the equivalent resistance of motor acting as a generator.	
		(iii)the power generated to supply voltage	
		(iv)the minimum and maximum permissible braking speed, and	
		(v) the motor speed.	
9		Explain the closed loop speed control of dc motor and show how it can be	[L5] [CO2] [6M]
		achieved by a chopper.	
10)	In rheostatic braking of dc series motor, a dc-dc converter is used. The	[L2] [CO3] [12M]
		armature and field resistance are 0.05Ω and 0.08Ω respectively and the	
		braking resistor is 8Ω .the armature current is assumed to be continuous and	
		ripple-free,and the average armature current is maintained constant at	
		I _a =300A.the back emf constant is Kt=14mv/A-rad/s. If the duty cycle of the	
		converter is 50%, determine	
		(i) the average voltage of dc-dc chopper	
		(ii) the power dissipated in braking resistor	
		(iii)the equivalent resistance of motor acting as a generator.	
		(iv)the motor speed and peak voltage of dc-dc converter.	
			l

UNIT -IV **CONTROL OF INDUCTION MOTOR**

1	a	Explain voltage control method of Induction motor drive?	
			[L2] [CO4] [6M]
	b	A 3-Ø star-connected 400V,50Hz,4-pole induction motor has the following	
		per phase parameters referred to the stators: R_1 =0.15 Ω ,	[L3] [CO4] [6M]
		X_1 =0.45 Ω , $R2^1$ =0.12 Ω , $X2^1$ =28.5 Ω compute the stator current and power	
		factor when the motor is operated at rated voltage and frequency with S=0.04.	
2		Draw the characteristics of torque-speed and explain them?	[L2] [CO4][12M]
3	a	Explain stator- frequency control method?	[L2] [CO4] [6M]
	b	A 3-Ø, 400V,50Hz,6 pole star connected induction motor has the following	[L3] [CO4] [6M]
		parameters (referred to stator): $R1=R2=0.15\Omega,X1=X2=0.8\Omega,determine$ the	

		initial braking torque if the motor is braked by plugging the full load the slip	
		is 0.04.	
4		Explain briefly voltage source inverter control of induction motor?	[L2] [CO4] [12M]
5		A 3-Ø, 50KW, 1475rpm, 400V, 50Hz, 4pole star-connected induction motor	[L3] [CO4] [12M]
		has the following parameters : Rs= 0.42 Ω , Rr= 0.23 Ω , Xs =0.95 Ω , Xr	
		=0.85 Ω , Xm =30 Ω , all quantities being referred to the stator side. The motor	
		is operated with frequency control. if the break down torque is 225 N-m at the	
		supply frequency, determine	
		(a) the supply frequency	
		(b) the slip at maximum torque	
		(c) the speed at maximum torque.	
6		Explain why the static Kramer drive can't be used for high speed ranges with	[L4] [CO4] [12M]
		neat sketch.	
7	a	Comparison of VSI Drive with CSI Drive?	[L2] [CO4] [6M]
	b	Explain speed –torque characteristics of current source inverter	[L3] [CO4] [6M]
8		Explain the operation of static rotor resistance control with waveforms.	[L2] [CO4] [12M]
9		A 3-Ø, 400V, 50Hz, 100Kw,24-pole,240 rpm slip-ring induction motor has	[L3] [CO4] [12M]
		both its stator and rotor windings connected in star pattern. The ratio of stator	
		to rotor turns is 1.4.the resistance per phase of rotor referred to stator is 0.03	
		Ω . The motor drives a fan which requires 100kw at full load speed of the	
		motor .determine the value of the resistance to connect in series with each slip	
		ring, so that the fan runs at 180 rpm. Assume that torque for the fan varies	
		proportionally to the squares of its speed. Neglect stator resistance, leakage	
		reactance and rotational losses.	
10		A 3-Ø, 4-pole, 50Hz induction motor has a chopper – controlled resistance in	[L3] [CO4] [12M]
		the rotor circuit for speed control load torque is ω^2 . When the thyristor is on,	
		the torque is 40-N-m at an average slip of 0.04. If Ton/Toff=1, compute the	
		average torque and speed. The motor develops a torque of 75% when the	
		thyristor is off. If the speed variation range is down to 1250 rpm from	
		synchronous speed, determine the ratio Ton/Toff requires to obtain an	
		average torque of 35N-m.	
	I .		

<u>UNIT -V</u> CONTROL OF SYNCHRONOUS MOTORS

1		Discuss using a block diagram the operation of a voltage source inverter fed	[L2][CO5][12M]
		synchronous motor in the true synchronous mode.	
2	a	Explain the operation of self - control of synchronous motor.	[L2][CO5][6M]
	b	Discuss the operation of separate -control of synchronous motor.	[L2][CO5][6M]
3		Using a block diagram, explain the operation of a CSI fed synchronous	[L2][CO5][12M]
		motor in the true synchronous mode.	
4		Discuss about the operation of a cycloconverter fed synchronous motor using suitable diagram.	[L2][CO5][12M]
5		Explain load commutated current source inverter fed synchronous motor?	[L2][CO5][12M]
6		Explain the closed loop control scheme of adjustable speed synchronous motor drive and mention its need and advantages?	[L2][CO6][12M]
7		A 7 MW 3 phase 12 KV star connected 6 pole 50 Hz 0.9 leading power factor synchronous motor has X_s =10 Ω , R_s =0 Ω . The rated field current is 40 A. The machine is controlled by variable frequency control at constant V/F ratio up to the base speed and at constant voltage above base speed. Determine i.Torque ii.The field current for the rated armature current at 750 rpm and 0.8 leading power factor	[L3][CO5][12M]
8		A 6MW 3 Phase 11 KV, star connected 6 pole 50 Hz 0.9 lagging power factor synchronous motor has synchronous reactance equal to 9Ω and armature resistance equal to 0Ω . The rated field current is 50 A. The machine is controlled by variable frequency control at constant V/F ratio up to the base speed and at constant voltage above base speed. Determine i.Torque and field current for the rated armature current, 750 RPM and 0.8 leading power factor ii.Armature current and power factor for half the rated motor torque, 1500 rpm and rated field current.	[L3][CO5][12M]
9		A 3 phase 400 volt 50 Hz 6 pole star connected wound rotor synchronous motor has Z_s =0+j2 Ω . Load torque proportional to speed ² , is 340 NM at rated synchronous speed. The speed of the motor is lowered by keeping V/F constant maintain unity power factor by field control of the motor. For the motor operation at 600 rpm, calculate i. Supply voltage ii. Armature current iii. Excitation angle iv. Load angle	[L3][CO5][12M]
10		What is meant by self-controlled synchronous motor drive and write any	[L2][CO5][12M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: PSD(19EE0227) Course & Branch: B.Tech - EEE

Year & Sem: IV-B.Tech & I-Sem **Regulation:** R19

$\underline{UNIT-I}$

CONVERTER FED DC MOTORS

	CONV	EKTEK FED DC MI	<u>JIUKS</u>		
1. In ac - dc conversion,	when the switch	is closed then the sum	of voltages around the	loop is	
(A) Zero		(B) Non a	zero	[]
(C) Equal to the sum of	of voltage when	switch is open (D) Tw	vice of the voltage when	n switch	is open
2. A 3-φ semi controlled	converter is	pulse converter		[]
A)6 B)	3	C) 12	D) 18		
3A 3-φ fully controlled	converter is ope	rated at c	_l uadrant	[]
A)single	B) two	C) four	D) three		
4. The back emf of a dc so	eries motor is dir	ectly proportional to _		[]
A) $V-I(R_a+R_{se})$	B) V-IR _a	C) $V+I(R_a+R_{se})$	D) V+IR _a		
5.The thyristors in 3 phas	se converters are	fired in sequence with	phase difference of	[]
A) 60^{0}	B) 90^{0}	C) 120^{0}	D) 180^{0}		
6. In 3 phase converters 6	•		duration.	[]
A) 60^{0}	B) 90^{0}	C) 120^{0}	D) 180^{0}		
7. A phase-controlled, sin	ngle-phase, full-b	oridge converter is sup	plying a highly inducti	ve DC l	oad. The
converter is fed from	a 230 V, 50 Hz,	AC source. The funda	mental frequency in H	z of the	voltage
ripple on the DC side	is		GATE-2017	[]
A)25 B) 50	C) 100	D) 300			
8.In three phase converte	rs $\alpha = 0^{\circ}$ at $\omega t = $ _			[]
A) 0°	B) 60°	C) 90°	D) 180°		
9. In a 3-φ semi converte	r each thyristor c	onducts for a period o	f	[]
A) 60°	B) 90°	C) 120°	D) 150°		
10.1-φ half-controlled red	ctifier operates in	quadrant of V _a _ :	I _a plane	[]
A) First B)	fourth	C) both first and fo	ourth D) both sec	ond and	third
11. What is the necessity	of controlled rec	tifier for dc drives?		[]
A)To improve efficien	cy B)to improv	e reliability c)to contr	rol speed d)to improve	perform	ance
12.The expression for ter	minal voltage of	dc motor in continuou	is conduction of 1-Φ fu	ılly	
	is		GATE-2010	[]
V_m	$_{\mathbf{p}}$ $^{2V_{m}}$	$V_m \simeq 0$	$2V_{m \sin \alpha}$		
A) $\frac{V_m}{\Pi}\cos\alpha$	ь) — " со	$s \alpha$ C) $\frac{V_m}{\Pi} \sin \alpha$	$\alpha \qquad D) \stackrel{}{\prod} \text{SIII } \alpha$		

13. How many diodes are required f	or a single phase semi converte	er of separately excite	ed D.C m	otor?
A) 1 B) 2	C) 3	D) 4	[]
14. The torque of a separately excite	d dc motor is directly propotion	nal to	[]
$A)I_a$ $B)Ia^2$	$C)\sqrt{I_a}$	D) none of thes	se	
157 611 11 1 16		C	F	,
15.In a fully controlled rectifier do			Ĺ]
A) $\alpha = 90^{\circ}$ B) $\alpha <$,	D) α≥90 ⁰		_
16.3-φ half-controlled rectifier oper	•		[]
A) First B) for	· ·			hird
17. The expression for terminal volt	age of dc motor in continuous o	conduction of 3-Φ fu	lly	
controlled rectifier is	,	I	[]
A) $(\sqrt{2}V_m/\pi)\cos\alpha$ B) $(2V_m/\pi)c$	os α C) $(3\sqrt{3}V_m/\pi)\cos\alpha$	D) $(3\sqrt{3}V_{\rm m}/\pi)(1+cc$	os α)	
18.what is meant by electrical drive	?		[]
A) drives employed for electrical m	otors B)motion control C)	drives employed for	engines	
D) none of this				
19. when a rectifier operation at an a	_		-	ower from
de terminals and transfers it to	ac mains.this operation of the re	ectifier is called	[]
A) conersion B) in	version C) linear	D) non-linear		
20. For natural commutation, addition	onal circulatory is		[]
A) Required	B) not required	C) both A&B	D) non	e of these
21.In an single phase series dc motor	or drives, the flux \emptyset =		[]
A) $\emptyset = \emptyset + \emptyset res$	B) Ø= Øa+ Øres	C) Ø= Øres	D) Ø=	= Øa
22. As the firing angle of three phase	e semi converter drive connect	ed to dc separately		
excited motor increases then the	input power factor		[]
A)decreases B) inc	creases C) remains sa	me D) can't say	7	
23.In three phase semi controlled c	onverters $\alpha=0^{\circ}$ at $\omega t=$	-	[]
A) 0° B) 30	° C) 60°	D) 90°		
24. In a 3-φ full controlled converte	rs, $\alpha = 0^0$, wt=		[]
A) 60° B) 90	° C) 120°	D) 150°		
25.In a fully controlled rectifier dc	drive the inverting operation is	for	[]
A) $\alpha = 90^{0}$ B) $\alpha < 90^{0}$	C) $\alpha > 90^0$ D) $\alpha \ge$	90^{0}		
26.In electrical braking stored energ	gy of rotating part is converted	in to electrical energ	y and	
dissipated in the form of	·		[]
A) voltage B) to	rque C) vaccum	D) heat		
27.If the converter operating as an i	nverter then the firing angle is		[]
A) $< 90^0$ B) > 9	0^0 C) 0	D) 180^{0}		
28.for large power dc motor drives,	controlled rectifiers	s are used.	[]
A) semi B) full	ly C) hal	f-wave D)) none	
29. given the expression for rms val	ue of current(i _{rms}), when it is or	perated in a semi-con	verter	
			[]
$A)I_{rms}=I_{a}$ B) $I_{rms}=I_{a}+I_{T}$	C) $I_{rms} = Ia[\pi -$	α/π] ^{1/2} D)	none of	these
30. For a half controlled rectifier fo	r continuous conduction mode,	the output voltage ca	ınnot be ı	reversed
because the motor is in	GAT	E-2015	[]
A)motoring operation	B) generating operation	C) both A&B D) none of	these

31.Calculate the mot	=	rmature current I _a =	38A,resistance,R	$_{a}$ =0.32 Ω , V_{s} =260	v,and motor
constant $K_{arp}=0.1$		D) 66 21 N M	C) 0 ((12 N N	/ D) 661.2 N	
A) 6.621 N-M		B) 66.21 N-M	<i>'</i>	<i>'</i>	
32. Calculate the mo					
motor, when 1a-3	oA,resistance Ra-	$=0.32 \Omega, V_s = 260 V_s$		n K _{arp} =0.182 v/rj E 2009) []
A) 1.1942 v	1	B) 91.42 v	C) 0.191 v	D) 1914	
33.The semi-control		<i>'</i>	·	2) 1)11	[]
A) unidirectional		ectional C) bot		D) none of these	
34.A three phase,thr	, , , , , , , , , , , , , , , , , , ,	•		*	ces.The circuit
is supplying an R loa					
		vcle C) 180^0 ea			-
35.A three phase ,thr	=		=		[]
A) 1	B) 2	C) 3		D) 4 GATE	-
36.In three phase,3-	,	′	angle for one of t	,	
would start conducti		on verter mas ming	angle for one of the		
A) 0°	B) 15°	C) 30°		D) 45°	L J
37.In single phase co	,	· · · · · · · · · · · · · · · · · · ·		,	
A) 0°	B) 60°	$\frac{1}{C} = \frac{1}{C} = \frac{1}{C}$		D) 180°	L J
38.In three phase ,3-	*	- /	ine commutated in	,	
36.III tiffee phase ,3-	puisceonverterwe	and operates as a n	ine commutated in	~	[]
Δ) 30° < α < 60° R	$0.90^{\circ} < \alpha < 1.80^{\circ}$	C) $90^{\circ} > \alpha$ D) it c	an never operates		
39.A fully controlled		C) 70 - u D) n c	an never operates	as a fine commu	
•		ly C) both dio	dec and thyristors	D) none of	l J these
40. A half-controlle	, •	•	•	*	
	0 1	tinuous.the fractio		•	•
angle a and the i	oad current is con	umuous.me macno		TE 2012	
A) 1/2	\mathbf{p})(1 α/π)	C) o	_	D) α/π	[]
A) 1/2	B) $(1-\alpha/\pi)$	C) (x/ Z1t	$D) \alpha / n$	
		UNIT -	п		
	FOUR OUA	DRANT OPERA		RIVES	
	FOOR QUA	DRAIT OF ERA	TION OF BC D.	KI V ES	
1.Which of the follo	wing is/are advan	tages of electric br	aking	ſ	1
A) less maintenan	•	•	nigh efficiency	D) all the above	-
2.In the which of the	,	,		ATE-2003]
A) Regenerative b	•	vnamic braking C)		all the above	-
3. During regenerati		<u> </u>		ĺ	1
A) $E_g > V$	B) $E_g < Y$		$E_g = V$	D) $E_{\sigma} \leq V$	-
4. In a 3-φ semi conv			· ·	C	1
A) 60°		C) 120°	D) 150		J
5. In braking, motor	,	-,	2, 100	Γ	1
A) Transformer	B) generator	C) condense	er	D) motor itself	ı
,		e, condons		_ ,	D 40
Power semiconducto	r drives				Page 10

Power semiconductor drives

QUESTION BANK 2022-23

Page 11

24. The reactor is required in a A) to improve the p.f B) the circulating current	_	• •		[D)in] crease
25. dual converters handle	during no lo	ad		Г	1
	ŭ		ating augment	D) los	daumant
A) very high temperature	b) no current	C) only circuit	ating current	D) 10a	u current
26. If v01 and v02 are the dual	converter output vol	ltages then the reactor v	oltage is	[]
A) $V0_1*V0_2$ B) $V0_1+$	$V0_2$ C) $V0_1$ - $V0_2$	D) none of these	GATE 2007		
27. A dual converter has				[]
A) two full converters in se	eries B) two half	converters in series	C) two full con	verter	s in anti
parallel D) two half con	•		,		
28. The four quadrant operation	-			[1
A) moving the mechanical			changing the f	iring ar	igle value
D) none of these	,	,	2 2	υ	U
29.To save energy during braki	ing brakin	ig is used		Γ]
	B) plugging	C)regenerating	D) all of the al	ove	,
30.In electrical braking stored	, , , , , ,	, ,	*		
dissipated in the form of				[]
<u>-</u>	B) torque	C) vaccum	D) heat	L	J
31was the first city	· •	<i>'</i>	2) 11000	ſ	1
	B) madras		D) bombay	L	J
32. Which of the following brak	<i>'</i>	*	,	ſ]
_	•	C)regenerative brakin		L	J
33. Which braking is not possil			.8 2)	Г	1
A) Rheostat braking B) dyna			Counter electric	current	braking
34. Polarity of supply voltage i				[
		C)regenerative brakin	σ D) all	L	J
35. In which braking back emf			S D) un	Γ	1
		C)regenerative brakin	σ D) all	L	J
36. In industries which electric			g D) un	ſ	1
		C)regenerative brakin	σ D) all	L	J
37. The slip of an induction mo			•	Г	1
<u>-</u>	<u> </u>	C) 2+S	D) S	L]
38. An elevator is required to op	,	C) 215	D) S	Γ	1
A) first quadrant B) second	=	C) third quadrant.	D) fourt	l h anad] rant
39. In 4 quadrant operation of a	-	•	D) louit	ri quau [1
	B) reverse braking.	C) forward braking	D) forwar	l d moto	J vrina
40. High braking torque produc	=	ΓE-2015	D) IOI wai	[11115.
		C)regenerative braking	D) all	L	J
A) plugging b) uyllal	inc braking	Chegenerative braking	, D) all		

UNIT –III **CHOPPER FED DC MOTORS**

1. The average value	of the output voltage in a s	step - down de chopper 1	s given by	L J	ĺ
A) $V 0 = Vs$	B) V 0 = D Vs	C) $V 0 = V_S / D$	D) $V 0 = Vs$	/(1-D)
			GATE	-2015	
2. Choppers is a				[]	
A) AC - DC conve	erters B) AC - AC conve	erters C) DC - AC conver	rters D) DC - DC	converte	ers
3. The control metho	d used for PWM dc - dc co	onverter is		[]]
A) Voltage mode of	control B) Current mode of	control C) Hysteric c	control D) a	.11	
4. A step - down cho]
A) Electric traction	· · · · · · · · · · · · · · · · · · ·	C) Machine to	ools D) a	.11	_
5. A reluctance moto		-tti(D):	14.4	[]	
	has high cost (C) requires se of reluctance motor is	starting gear (D) is provi	ided with slip rin		1
(A) nearly unity (B) 0.8 (D) 0.3	to 0.4	L J]
	reluctance motor is around	(D) 0.3	10 0.4.	[]	1
•	% (C) 75 to 85% (D) 60 to	75%			•
` ' '	or on over-load runs as			[]	1
	notor (B) induction motor ((C) either of the two D) all	L J	1
• • •	vator is usually expressed i) un	[]	1
	(B) travel in meters (C) and		motion	L J	ı
* *	ontrolled dc drives are gene	• • • • • • • • • • • • • • • • • • • •	motion	[]	1
	cavators (B) medium duty	•	uty avegyators (F		J
	tors, the contacts are gener	•	uty excavators (L	, απ Γ '	1
	lver (C) cadmium copper	•		L]	J
	gnet is preferred for noisel	· · · · · · · · · · · · · · · · · · ·		Г	1
	(B) AC operated (C) Any	=		[]	J
` ′ •		· · · · · · · · · · · · · · · · · · ·	010	Г ?	1
	cy choppers the device that TRIAC (C) Transistor (I	•	UIU		J
• • • • • • • • • • • • • • • • • • • •	perations per hour in case of		ha amaum d		
-		of class iv contactor will	. De around		
, , , , ,	(C) 900 (D) 1200.		and for a mariad	، ۔ سنسہ ما	_
	tors, the duty in which the		osed for a period		
	to the no-load periods, is l			[]	J
•	(B) Intermittent duty (C)	- · ·			
	tors the ratio of the in servi	ice period to the entire pe	erioa, expressea a		
percentage is known		(D) C.1 1]
	I factor (C) class of contac			· .	
	or should be mechanically		(T) = 0 HH	L J]
	imes (B) 0.25 million time	es (C) 1.2 million times	(D) 5.0 million ti	mes.	_
	ches find applications on				
· · · •	duction motors (B) single p	phase motors (C) transfor	rmers (D) coolin	g ranges	•
19. A saturable core					
(A) step less ac vo	oltage variation (B) pluggi	ng of induction motor			

(C) overload protection of transformers (D) all of the above.		
20. In case of saturable core reactors, the power gain varies from	[1
(A) 1 to 5 (B) 5 to 10 (C) 5 to 100 (D) 100 to 1000.	L	,
21. A magnetic amplifier can be used for the control of	[1
(A) current (B) voltage (C) speed (D) all of the above.	L	J
22. An electric drive consists of GATE-2012	Γ	1
(A) motor, transmitting shaft and control equipment (B) motor and load		,
(C) motor, control equipment and load (D) motor, supply system and lo	oad.	
23. In case of contactors, the contact chatter may be due to	ſ	1
(A) excessive jogging (B) broken pole shader	-	-
(C) poor contact in the control pick-up circuit (D) any of the above.		
24. In a contactor overheating of contacts may result from any of the following except:	[]
(A) Excess contact pressure (B) High inductive loads		
(C) Copper oxide on contacts (D) Carrying load continuously for a long time.		
25. In case of contactors, the magnet may become noisy due to	[]
(A) dirt or rust on magnet faces (B) low voltage (C) broken pole shader (D) any of	the abo	ve.
26. The failure of a thermal relay may occur due to	[]
(A) motor and relay in different ambient temperatures (B) relay previously damaged l	y short	circuit
(C) mechanical binding (D) any of the above.		
27. Premature blowing of a fuse may occur due to	[]
(A) heating at ferrule contacts (B) corrosion or oxidation of ferrules		
(C) weak contact pressure (D) any of the above.		
28. According to Indian Electricity rules, extra high voltage implies voltage exceeding	[]
(A) 440 V (B) 650 V (C) 33 kV (D)110kV.		
29. In case of low and medium voltage circuits, the permissible voltage variation is	[]
(A) 1% (B) 5% (C) 12.5% (D) 20%.		
30. Which of the following site will be preferred for earthing?	[]
(A) wet mashy ground (B) clayey soil		
(C) loam mixed with small quantities of sand (D) damp and wet sand pit		
31. Resistivity of earth increases sharply if the moisture falls below GATE-2017	[]
(A) 70% (B) 50% (C) 40% (D) 20%.		
32. Which of the following is least preferred for earthing?	[]
(A) earth mixed with salt and charcoal (B) dry earth		
(C) marshy ground containing brine waste (D) clayey soil	-	
33. Earth electrodes can be in the form of]
(A) rods and pipes (B) strips (C) plates (D) any of the above.	F	1
34. A saturable core reactor is basically a		J
(A) variable resistor (B) step down transformer (C) thermal relay (D) variable imped	lance.	1
35. A step - down choppers can be used in	L]
(A) Electric traction (B) Electric vehicles (C) Machine tools (D) All of these 36. The control method used for PWM dc - dc converter is	Г	1
(A) Voltage mode control (B) Current mode control (C) Hysteric control (D) All of	l f these]
37. Choppers is a	r unese	1
on Choppers is a	L	J

(A) AC - DC con	nverters (B) A	C - AC convert	ters		
(C) DC - AC con	verters (D) D	C - DC convert	ters		
38. The transfer func	ction of PWM is	generally deve	eloped in	[]
(A) Time domain	(B) Frequency of	lomain (C) Eitl	her (a) or (b) (D) None of these		
39. In the	type of cho	pper, two stage	conversions takes place.	[]
(A) AC-DC (B)	AC link (C) l	OC link (D)	None of the mentioned		
40. Which device can	n be used in a ch	nopper circuit?	GATE-2010	[]
$(A) BJT \qquad (B) I$	MOSFET	(C) GTO	(D) All of the mentioned		

<u>UNIT –IV</u> **CONTROL OF INDUCTION MOTOR**

1. In case of kiln drives		[]
(A) starting torque is almost zero (B) starting torque and running torque a	re nearly	equal
(C) starting torque is more than double of the	running torque. (D) any of the ab	ove.	
2. Motor preferred for kiln drives is usually		[]
(A) slip ring induction motor (B) thr	ree phase shunt wound commutator m	otor	
(C) cascade controlled ac motor (D) and	y of the above.		
3. Belt conveyors offer GA	ATE-2013	[]
(A) zero starting torque (B) lo	w starting torque		
(C) medium starting torque (D) hi	gh starting torque.		
4. In case belt conveyors		[]
(A) squirrel cage motors with direct-on-line s	tarters are used (B) dc shunt motors	are used	
(C) single phase induction motors are used	(D) induction motors with star-delta	ı starters a	are used.
5. Which of the following motor is preferred for	r blowers ?	[]
(A) wound rotor induction motor	(B) squirrel cage induction motor		
(C) dc shunt motor	(D) dc series motor.		
6. Centrifugal pumps are usually driven by		[]
(A) dc shunt motors	(B) dc series motors		
(C) squirrel cage induction motors	(D) any of the above.		
7. In case of centrifugal pumps the starting torq	ue is generally	[]
(A) double the running torque	(B) slightly more than running torque	е	
(C) same as running torque	(D) less than running torque.		
8. In a centrifugal pump if the liquid to be pump	ped has density twice that of water, the	en the ho	rse power
required (as compared to that while pumping	water) will be	[]
(A) half (B) same (C) double	(D) four times.		
9. Wound rotor and squirrel-cage motors with hare used for	igh slip which develop maximum tor	que at sta	nd still
	(C) elevators (D) all of the abo	l Ove	J
(A) machine tools (B) presses and punches 10. Belted slip ring induction motor is almost in		٥٧٥. آ	1
10. Defice sup ring modern motor is annost if	ivariably used for	L	J

(A) centrifugal blowers (B) jaw crushers (C) water pumps (D) screw pumps	٠.	
11. In jaw crushers, a motor has to often start against	ſ	1
(A) low load (B) medium load (C) normal load (D) heavy load.	-	-
12. Motor used for elevators is generally GATE-2010	[1
(A) synchronous motor (B) induction motor	L	-
(C) capacitor start single phase motor (D) any of the above.		
13. In synthetic fibre mills motor with	[1
(A) constant speeds are preferred (B) high starting torque are preferred	_	-
(C) variable speed are preferred (D) low starting torque are preferred.		
14. Which of the following motor is preferred for synthetic fibre mills?	[1
(A) series motor (B) reluctance motor	_	-
(C) shunt motor (D) synchronous motor.		
15. Reluctance motor is a	[1
(A) self-starting type synchronous motors (B) low torque variable speed motor	L	-
(C) variable torque motor (D) low noise, slow speed motor.		
16. The consideration involved in the selection of the type of electric drive for a particular	ar appli	cation
depends on	[1
(A) Speed control range and its nature (B) Starting torque	_	-
(C) Environmental conditions (D) All of the above.		
17. Which of the following is preferred for automatic drives?	ſ	1
(A) Synchronous motors (B) Squirrel cage induction motor	L	-
(C) Ward Leonard controlled dc motors (D) Any of the above.		
18. Which type of drive can be used for hoisting machinery	[]
(A) AC slip ring motor (B) Ward Leonard controlled DC shunt motor	r	
(C) DC compound motor (D) Any of the above.		
19. The motor normally used for crane travel is	[]
(A) AC slip ring motor (B) Ward Leonard controlled DC shunt motor	r	
(C) Synchronous motor (D) DC differentially compound motor.		
20. A wound rotor induction motor is preferred over squirrel cage induction motor when	n the ma	ajor
consideration involved is GATE-2017	[]
(A) high starting torque (B) low starting current		
(C) speed control over limited range (D) all of the above.		
21. When smooth and precise speed control over a wide range is desired, the motor pref	erred is	3
(A) synchronous motor (B) squirrel cage induction motor	[]
(C) wound rotor induction motor (D) dc motor.		
22. When quick speed reversal is a consideration, the motor preferred is	[]
(A) synchronous motor (B) squirrel cage induction motor		
(C) wound rotor induction motor (D) dc motor.		
23. Stator voltage control for speed control of induction motors is suitable for	[]
(A) fan and pump drives (B) drive of a crane		
(C) running it as generator (D) constant load drive.		
24. The selection of control gear for a particular application is based on the consideration	n of	
(A) duty (B) starting torque	[]
(C) limitations on starting current (D) all of the above.		

25. As compared to squirrel cage induction	n motor, a wound rotor induction motor is pref	erred w	hen the
major consideration is		[]
(A) high starting torque	(B) low windage losses		
(C) slow speed operation	(D) all of the above.		
26. A synchronous motor is found to be m	ore economical when the load is above	[]
(A) 1 kW (B) 10 kW (C) 20 kW (D)1	00kW.		
27. The advantage of a synchronous motor	r in addition to its constant speed is	[]
(A) high power factor (B) bette	er efficiency		
(C) lower cost (D) all o	f the above.		
28. In motor circuit static frequency chang	gers are used for	[]
(A) power factor improvement	(B) improved cooling		
(C) reversal of direction	(D) speed regulation.		
29. In case of traveling cranes, the motor p		ſ]
	(B) Ward Leonard controlled DC shunt motor	-	-
. ,	(D) Single phase motor.		
30. The characteristics of drive for. crane l		[]
	B) precise control	_	•
	(D) all of the above.		
31. Motors preferred for rolling mill drive		[]
(A) dc motors	(B) ac slip ring motors with speed control	L	,
	(D) none of the above.		
· · · · ·	nt characteristics, are best suited for the rolling	mills	
(A) dc motors (B) slip ring induction	_	[]
(C) squirrel cage induction motors (D) s		L	,
	more, for given flux distribution and number	of turns	
(A) Full pitch coil (B) Short pitch coil	_	[]
(C) Long pitch coil (D) Equal emf will		L	J
34. Slip ring induction motor has	GATE-2015	[]
(A) Low starting torque (B) Medium sta		L	J
(C) High starting torque (D) None			
35. In an induction motor, rotor speed is a		[]
-)More than the stator speed	L	J
- · ·	D)None of these		
36. In induction motor, greater the number		Γ]
_	e speed (C)Lesser the frequency (D)All of t	t hese	J
37. For the purpose of plugging	speed (e)Desser the frequency (D)/fiff of t	riese I	1
1 1 1 00 0	ero (C)N is infinity (D)N is negative w.r.t	to Ne	J
38. An induction motor is identical to	cro (c)rv is infinity (D)rv is negative w.i.t	[]
(A) D.C. compound motor (B) D.C. s	eries motor	L	J
(C) Synchronous motor (D) Asynchronous			
39 . The efficiency of an induction motor of		Γ	1
(A) 60 to 90 % (B) 80 to 90 % (C) 9	•]
40. For driving high inertia loads best type		Γ	1
	ype (C) Any of the above (D) None of the ab	L	J
(A) sup inig type (b) squitter-cage t	ype (C) Any of the above (D) None of the ab	OVE	

<u>UNIT -V</u> CONTROL OF SYNCHRONOUS MOTORS

1. Synchronous motor can operate at		[]
(A) Lagging power factor only (B)	Leading power factor only		
(C) Unity power factor only (D) l	Lagging, leading and unity power	er factor	r only.
2. An unexcited single phase synchronous motor is	GATE-2010		[
(A) reluctance motor (B)	repulsion motor		
(C) universal motor (D)	AC series motor.		
3. The maximum power developed in the synchronous m	notor will depend on	[]
(A) rotor excitation only (B) n	naximum value of coupling ang	le	
(C) supply voltage only (D) rotor excitation supply v	oltage and maximum value of c	oupling	angle.
4. In case the field of a synchronous motor is under excit	ted, the power factor will be	[]
(A) leading (B) lagging (C) zero	(D) unity.		
5. A synchronous motor is switched on to supply with its	s field windings shorted on then	iselves.	It will
(A) not start (B) start and continue	to run as an induction motor	[]
(C) start as an induction motor and then run as synchro	onous motor (D)None		
6. When the excitation of an unloaded salient pole synch	ronous motor gets dis connecte	d []
(A) the motor will burn (B) the motor will s	top		
(C) the motor will ran as a reluctance motor at the sam	e speed		
(D) the motor will run as a reluctance motor at a lower	speed.		
7. The damping winding in a synchronous motor is gene	rally used GATE-2014	[]
(A) to provide starting torque only (B) to reduce r	noise level		
(C) to reduce eddy currents (D) to prevent	thunting and provide the starting	g torque	e .
8. The back emf set up in the stator of a synchronous more	tor will depend on	[]
(A) rotor speed only (B) rotor ex	citation only		
(C) rotor excitation and rotor speed (D) coupling a	angle, rotor speed and excitation	l .	
9. A synchronous machine has its field winding on the st	tator and armature winding on the	ne rotor	. Under
steady running conditions, the air-gap field		[]
(A) rotates at synchronous speed with respect to stato	r		
(B) rotates at synchronous speed with direction of rot	ation of the rotor		
(C) remains stationary with respect to stator			
(D) remains stationary with respect to rotor.			
10. Which of the following is an unexcited single phase	synchronous motor?	[]
(A) A.C. series motor (B) Universal motor ((C) Reluctance motor (D) Repu	lsion m	otor.
11. An over excited synchronous motor draws current at		[]
(A) lagging power factor (B) leading power factor			
(C) unity power factor (D) depends on the nature of le	oad.		
12. With the increase in the excitation current of synchro	onous motor the power factor of	the mo	tor will
(A) improve (B) decrease (C) remain constant (D) of	depend on other factors.	[]
13. The armature current of a synchronous motor has lar	ge values for GATE-2011	[]
(A) low excitation only (B) high excitation of	only		
(C) both low and high excitation (D) depends on other	ier factors.		

14. A synchronous motor is switched on to supply with its field windings shorted on th	emselve	s. It will
(A) not start (B) start and continue to run as an induction motor	[]
(C) start as induction motor and then run as a synchronous motor.		
15. If the field of a synchronous motor is under excited, the power factor will be	[]
(A) lagging (B) leading (C) unity. (D) None		
16. When the excitation of an unloaded salient-pole synchronous motor suddenly gets d	isconne	cted
(A) the motor stops (B) it runs as a reluctance motor at the some speed	[]
(C) it runs as a reluctance motor at a lower speed. (D) None		
17. The armature current of the synchronous motor has large values for	[]
(A) low excitation only (B) high excitation only		
(C) both high and low excitation. (D) None		
18. What is the ratio of no load speed to full load speed of a 200 kVA, 12 pole, 2200 V	, 3 phase	e, 60 Hz
synchronous motor ?	[]
(A) 1 (B) 1.1 (C) 1.21 (D) infinite.		
19. Which synchronous motor will be smallest in size ?	[]
(A) 5 HP, 500 rpm (B) 5 HP, 375 rpm (C) 10 HP, 500 rpm (D) 10 HP, 375 rpm.		
20. The maximum value of torque that a synchronous motor, can develop without losin	g its syr	chronism
is known as	[1
(A) breaking torque (B) synchronizing torque (C) pull out torque (D) slip torque.		
21. In a synchronous motor if the back emf generated in the armature at no load is appr	oximate	ly equal
to the applied voltage, then	[]
(A) the torque generated is maximum (B) the excitation is said to be zero percentage.	ent	
(C) the excitation is said to be 100% (D) the motor is said to be fully loaded.		
22. If the field of a synchronous motor is under-excited, the power factor will be	[]
(A) unity (B) lagging (C) leading (D) more than unity.		
23. A 3 phase, 400 V, 50 Hz salient pole synchronous motor is fed from an infinite bus	and is r	unning at
no load. Now if the field current of the motor is reduced to zero	[]
(A) the motor will stop (B) the motor will run	_	_
(C) the motor will run at synchronous speed (D) the motor will run at less than sync	chronous	s speed.
24. The purpose of embedding the damper winding in the pole face is to	[]
(A) eliminate hunting and provide adequate starting torque (B) reduce windage lo	sses	-
(C) eliminate losses on account of air friction (D) reduce bearing fri	ction.	
25. In a 3 phase VSI out of eight valid states, the number of valid states that produce ze	ro ac lir	ie
voltages is/are GATE-2015	[]
(A) One (B) two (C) Three (D) Four	-	-
26. In case of a synchronous motor we have	[]
I. Load II. Speed III. DC excitation.		_
The magnitude of stator back emf depends on		
(A) I only (B) I and II only (C) III only (D) I, II and III.		
27. Which of the following motors is non-self starling?	[]
(A) squirrel cage induction motor (B) wound rotor induction motor		_
(C) synchronous motor (D) DC series motor.		
28. The back emf in the stator of a synchronous motor depends on	[]
(A) speed of rotor (B) rotor excitation	-	-

(C) number of poles (D) flux	density.		
29. Which motor can conveniently operate on la	gging as well as leading power factor? []
(A) squirrel cage induction motor (B)	wound rotor induction motor		
(C) synchronous motor (D)	any of the above.		
30. A synchronous motor working on leading po	ower factor and not driving any mechanical	l, is kn	own
(A) synchronous induction motor (B)	spinning motor []
(C) synchronous condenser (D) none of the above.		
31. The constant speed of a synchronous motor of	an be changed to new fixed value by []
(A) changing the applied voltage (B)	interchanging any two phases		
(C) changing the load (D) changing the frequency of supply.		
32. A 3 phase, 400 V, 50 Hz synchronous motor	is operating at zero power factor lagging	with re	spect to
the excitation voltage. The armature reaction	n mmf. produced by the armature current w	vill be	
(A) demagnetizing (B) magnetizing (C) cross	s-magnetizing (D) none of the above. []
33. In a synchronous motor, the torque angle is]]
(A) the angle between the rotating stator flux	and rotor poles		
(B) the angle between magnetizing current a	nd back emf		
(C) the angle between the supply voltage and	the back emf (D) none of the above.		
34. A 3 phase, 400 V, 50 Hz, 4 pole synchronou	s motor has a load angle of 10° electrical.	The eq	uivalen
mechanical degrees will be 35.	[]
(A) 10° (B) $5\sqrt{2}$ degrees (C) 5 degrees			
35. A 3 phase, 400 V, 50 Hz synchronous motor	has fixed excitation. The load on the motor	or is do	oubled.
The torque angle, φ_i will become nearly	GATE-2018 []
$(A) \ \phi_r \ /2 \qquad (B) \ \phi_r \qquad (C) 2 \ \phi_r \qquad (D) \ \sqrt{2} \ \phi_r$			
36. The hunting in a synchronous motor takes pl]
(A) friction in bearings is more (B) air gap i		stant.	
37. V curves for a synchronous motor represent]
. ,	nt and power factor		
* * * *	arrent and field current.		
38. The breakdown. torque of a synchronous mo	_]
• • • • • • • • • • • • • • • • • • • •	(C) applied voltage (D) (applied voltage)	/oltage	$(a)^2$.
39. Hunting in a synchronous motor cannot be d]
(A) variable frequency (B) variable load (C)			
40. When the excitation of an unloaded salient p		onnect	ed
- · · · · · · · · · · · · · · · · · · ·	s as a reluctance motor at the same speed		
(C) it runs at a reluctance motor at a lower spe	eed. (D) None []